Petrov–Galerkin method

The Petrov–Galerkin method is a mathematical method used to approximate solutions of partial differential equations which contain terms with odd order and where the test function and solution function belong to different function spaces. It can be viewed as an extension of Bubnov-Galerkin method where the bases of test functions and solution functions are the same. In an operator formulation of the differential equation, Petrov–Galerkin method can be viewed as applying a projection that is not necessarily orthogonal, in contrast to Bubnov-Galerkin method.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.