Pascal's rule

In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients. It states that for positive natural numbers n and k,

where is a binomial coefficient; one interpretation of the coefficient of the xk term in the expansion of (1 + x)n. There is no restriction on the relative sizes of n and k, since, if n < k the value of the binomial coefficient is zero and the identity remains valid.

Pascal's rule can also be viewed as a statement that the formula

solves the linear two-dimensional difference equation

over the natural numbers. Thus, Pascal's rule is also a statement about a formula for the numbers appearing in Pascal's triangle.

Pascal's rule can also be generalized to apply to multinomial coefficients.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.