Parallelizable manifold

In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields

on the manifold, such that at every point of the tangent vectors

provide a basis of the tangent space at . Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a global section on

A particular choice of such a basis of vector fields on is called a parallelization (or an absolute parallelism) of .

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.