Order type

In mathematics, especially in set theory, two ordered sets X and Y are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element pairs with exactly one in the other set) such that both f and its inverse are monotonic (preserving orders of elements).

In the special case when X is totally ordered, monotonicity of f already implies monotonicity of its inverse.

One and the same set may be equipped with different orders. Since order-equivalence is an equivalence relation, it partitions the class of all ordered sets into equivalence classes.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.