Order-2 apeirogonal tiling
In geometry, an order-2 apeirogonal tiling, apeirogonal dihedron, or infinite dihedron is a tiling of the plane consisting of two apeirogons. It may be considered an improper regular tiling of the Euclidean plane, with Schläfli symbol {∞, 2}. Two apeirogons, joined along all their edges, can completely fill the entire plane as an apeirogon is infinite in size and has an interior angle of 180°, which is half of a full 360°.
Apeirogonal tiling | |
---|---|
Type | Regular tiling |
Vertex configuration | ∞.∞ [[File:|40px]] |
Face configuration | V2.2.2... |
Schläfli symbol(s) | {∞,2} |
Wythoff symbol(s) | 2 | ∞ 2 2 2 | ∞ |
Coxeter diagram(s) | |
Symmetry | [∞,2], (*∞22) |
Rotation symmetry | [∞,2]+, (∞22) |
Dual | Apeirogonal hosohedron |
Properties | Vertex-transitive, edge-transitive, face-transitive |
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.