Normal operator

In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : HH that commutes with its Hermitian adjoint N*, that is: NN* = N*N.

Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are

A normal matrix is the matrix expression of a normal operator on the Hilbert space Cn.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.