Nonconvex great rhombicuboctahedron
In geometry, the nonconvex great rhombicuboctahedron is a nonconvex uniform polyhedron, indexed as U17. It has 26 faces (8 triangles and 18 squares), 48 edges, and 24 vertices. It is represented by the Schläfli symbol rr{4,3⁄2} and Coxeter-Dynkin diagram of . Its vertex figure is a crossed quadrilateral.
Nonconvex great rhombicuboctahedron | |
---|---|
Type | Uniform star polyhedron |
Elements | F = 26, E = 48 V = 24 (χ = 2) |
Faces by sides | 8{3}+(6+12){4} |
Coxeter diagram | |
Wythoff symbol | 3/2 4 | 2 3 4/3 | 2 |
Symmetry group | Oh, [4,3], *432 |
Index references | U17, C59, W85 |
Dual polyhedron | Great deltoidal icositetrahedron |
Vertex figure | 4.4.4.3/2 |
Bowers acronym | Querco |
This model shares the name with the convex great rhombicuboctahedron, also called the truncated cuboctahedron.
An alternative name for this figure is quasirhombicuboctahedron. From that derives its Bowers acronym: querco.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.