Nilpotent ideal

In mathematics, more specifically ring theory, an ideal I of a ring R is said to be a nilpotent ideal if there exists a natural number k such that Ik = 0. By Ik, it is meant the additive subgroup generated by the set of all products of k elements in I. Therefore, I is nilpotent if and only if there is a natural number k such that the product of any k elements of I is 0.

The notion of a nilpotent ideal is much stronger than that of a nil ideal in many classes of rings. There are, however, instances when the two notions coincide—this is exemplified by Levitzky's theorem. The notion of a nilpotent ideal, although interesting in the case of commutative rings, is most interesting in the case of noncommutative rings.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.