Nicotinamide mononucleotide
Nicotinamide mononucleotide ("NMN" and "β-NMN") is a nucleotide derived from ribose, nicotinamide, nicotinamide riboside and niacin. In humans, several enzymes use NMN to generate nicotinamide adenine dinucleotide (NADH). In mice, it has been proposed that NMN is absorbed via the small intestine within 10 minutes of oral uptake and converted to nicotinamide adenine dinucleotide (NAD+) through the Slc12a8 transporter. However, this observation has been challenged, and the matter remains unsettled.
Names | |
---|---|
IUPAC name
3-Carbamoyl-1-(5-O-phosphono-β-D-ribofuranosyl)pyridin-1-ium | |
Systematic IUPAC name
[(2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate | |
Other names
| |
Identifiers | |
3D model (JSmol) |
|
3570187 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.012.851 |
EC Number |
|
KEGG | |
PubChem CID |
|
UNII | |
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
C11H15N2O8P | |
Molar mass | 334.221 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references |
Because NADH is a cofactor for processes inside mitochondria, for sirtuins and PARP, NMN has been studied in animal models as a potential neuroprotective and anti-aging agent. The reversal of aging at the cellular level by inhibiting mitochondrial decay in presence of increased levels of NAD+ makes it popular among anti-aging products. Dietary supplement companies have aggressively marketed NMN products, claiming those benefits. However, no human studies to date have properly proven its anti-aging effects with proposed health benefits only suggested through research done in vitro or through animal models. Single-dose administration of up to 500 mg was shown safe in men in a study at Keio University. One 2021 clinical trial found that NMN improved muscular insulin sensitivity in prediabetic women, while another found that it improved aerobic capacity in amateur runners. A 2023 clinical trial showed that NMN improves performance on a six-minute walking test and a subjective general health assessment.
NMN is vulnerable to extracellular degradation by CD38 enzyme, which can be inhibited by compounds such as CD38-IN-78c.