Metabelian group
In mathematics, a metabelian group is a group whose commutator subgroup is abelian. Equivalently, a group G is metabelian if and only if there is an abelian normal subgroup A such that the quotient group G/A is abelian.
Subgroups of metabelian groups are metabelian, as are images of metabelian groups over group homomorphisms.
Metabelian groups are solvable. In fact, they are precisely the solvable groups of derived length at most 2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.