Mechanotaxis

Mechanotaxis refers to the directed movement of cell motility via mechanical cues (e.g., fluidic shear stress, substrate stiffness gradients, etc.). In response to fluidic shear stress, for example, cells have been shown to migrate in the direction of the fluid flow. Mechanotaxis is critical in many normal biological processes in animals, such as gastrulation, inflammation, and repair in response to a wound, as well as in mechanisms of diseases such as tumor metastasis.

A subset of mechanotaxis - termed durotaxis - refers specifically to cell migration guided by gradients in substrate rigidity (i.e. stiffness). The observation that certain cell types seeded on a substrate rigidity gradient migrate up the gradient (i.e. in the direction of increasing substrate stiffness) was first reported by Lo et al. The primary method for creating rigidity gradients for cells (e.g., in biomaterials) consists of altering the degree of cross-linking in polymers to adjust substrate stiffness. Alternative substrate rigidity gradients include micropost array gradients, where the stiffness of individual microposts is increased in a single, designed direction.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.