Maximum principle

In the mathematical fields of partial differential equations and geometric analysis, the maximum principle is any of a collection of results and techniques of fundamental importance in the study of elliptic and parabolic differential equations.

In the simplest case, consider a function of two variables u(x,y) such that

The weak maximum principle, in this setting, says that for any open precompact subset M of the domain of u, the maximum of u on the closure of M is achieved on the boundary of M. The strong maximum principle says that, unless u is a constant function, the maximum cannot also be achieved anywhere on M itself.

Such statements give a striking qualitative picture of solutions of the given differential equation. Such a qualitative picture can be extended to many kinds of differential equations. In many situations, one can also use such maximum principles to draw precise quantitative conclusions about solutions of differential equations, such as control over the size of their gradient. There is no single or most general maximum principle which applies to all situations at once.

In the field of convex optimization, there is an analogous statement which asserts that the maximum of a convex function on a compact convex set is attained on the boundary.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.