Matchstick graph
In geometric graph theory, a branch of mathematics, a matchstick graph is a graph that can be drawn in the plane in such a way that its edges are line segments with length one that do not cross each other. That is, it is a graph that has an embedding which is simultaneously a unit distance graph and a plane graph. For this reason, matchstick graphs have also been called planar unit-distance graphs. Informally, matchstick graphs can be made by placing noncrossing matchsticks on a flat surface, hence the name.
Harborth graph | |
---|---|
Vertices | 52 |
Edges | 104 |
Radius | 6 |
Diameter | 9 |
Girth | 3 |
Table of graphs and parameters |
3-regular girth-5 matchstick graph | |
---|---|
Vertices | 54 |
Edges | 81 |
Girth | 5 |
Table of graphs and parameters |
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.