Logarithmic conformal field theory

In theoretical physics, a logarithmic conformal field theory is a conformal field theory in which the correlators of the basic fields are allowed to be logarithmic at short distance, instead of being powers of the fields' distance. Equivalently, the dilation operator is not diagonalizable.

Examples of logarithmic conformal field theories include critical percolation.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.