Linear-fractional programming

In mathematical optimization, linear-fractional programming (LFP) is a generalization of linear programming (LP). Whereas the objective function in a linear program is a linear function, the objective function in a linear-fractional program is a ratio of two linear functions. A linear program can be regarded as a special case of a linear-fractional program in which the denominator is the constant function 1.

Formally, a linear-fractional program is defined as the problem of maximizing (or minimizing) a ratio of affine functions over a polyhedron,

where represents the vector of variables to be determined, and are vectors of (known) coefficients, is a (known) matrix of coefficients and are constants. The constraints have to restrict the feasible region to , i.e. the region on which the denominator is positive. Alternatively, the denominator of the objective function has to be strictly negative in the entire feasible region.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.