Lindenbaum–Tarski algebra
In mathematical logic, the Lindenbaum–Tarski algebra (or Lindenbaum algebra) of a logical theory T consists of the equivalence classes of sentences of the theory (i.e., the quotient, under the equivalence relation ~ defined such that p ~ q exactly when p and q are provably equivalent in T). That is, two sentences are equivalent if the theory T proves that each implies the other. The Lindenbaum–Tarski algebra is thus the quotient algebra obtained by factoring the algebra of formulas by this congruence relation.
The algebra is named for logicians Adolf Lindenbaum and Alfred Tarski. Starting in the academic year 1926-1927, Lindenbaum pioneered his method in Jan Łukasiewicz's mathematical logic seminar, and the method was popularized and generalized in subsequent decades through work by Tarski. The Lindenbaum–Tarski algebra is considered the origin of the modern algebraic logic.