Lie bialgebra

In mathematics, a Lie bialgebra is the Lie-theoretic case of a bialgebra: it is a set with a Lie algebra and a Lie coalgebra structure which are compatible.

It is a bialgebra where the multiplication is skew-symmetric and satisfies a dual Jacobi identity, so that the dual vector space is a Lie algebra, whereas the comultiplication is a 1-cocycle, so that the multiplication and comultiplication are compatible. The cocycle condition implies that, in practice, one studies only classes of bialgebras that are cohomologous to a Lie bialgebra on a coboundary.

They are also called Poisson-Hopf algebras, and are the Lie algebra of a Poisson–Lie group.

Lie bialgebras occur naturally in the study of the Yang–Baxter equations.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.