Lehmer's conjecture
Lehmer's conjecture, also known as the Lehmer's Mahler measure problem, is a problem in number theory raised by Derrick Henry Lehmer. The conjecture asserts that there is an absolute constant such that every polynomial with integer coefficients satisfies one of the following properties:
- The Mahler measure of is greater than or equal to .
- is an integral multiple of a product of cyclotomic polynomials or the monomial , in which case . (Equivalently, every complex root of is a root of unity or zero.)
There are a number of definitions of the Mahler measure, one of which is to factor over as
and then set
The smallest known Mahler measure (greater than 1) is for "Lehmer's polynomial"
for which the Mahler measure is the Salem number
It is widely believed that this example represents the true minimal value: that is, in Lehmer's conjecture.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.