Learning classifier system

Learning classifier systems, or LCS, are a paradigm of rule-based machine learning methods that combine a discovery component (e.g. typically a genetic algorithm) with a learning component (performing either supervised learning, reinforcement learning, or unsupervised learning). Learning classifier systems seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions (e.g. behavior modeling, classification, data mining, regression, function approximation, or game strategy). This approach allows complex solution spaces to be broken up into smaller, simpler parts.

The founding concepts behind learning classifier systems came from attempts to model complex adaptive systems, using rule-based agents to form an artificial cognitive system (i.e. artificial intelligence).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.