Kuroda normal form

In formal language theory, a noncontracting grammar is in Kuroda normal form if all production rules are of the form:

ABCD or
ABC or
AB or
Aa

where A, B, C and D are nonterminal symbols and a is a terminal symbol. Some sources omit the AB pattern.

It is named after Sige-Yuki Kuroda, who originally called it a linear bounded grammar, a terminology that was also used by a few other authors thereafter.

Every grammar in Kuroda normal form is noncontracting, and therefore, generates a context-sensitive language. Conversely, every noncontracting grammar that does not generate the empty string can be converted to Kuroda normal form.

A straightforward technique attributed to György Révész transforms a grammar in Kuroda normal form to a context-sensitive grammar: ABCD is replaced by four context-sensitive rules ABAZ, AZWZ, WZWD and WDCD. This proves that every noncontracting grammar generates a context-sensitive language.

There is a similar normal form for unrestricted grammars as well, which at least some authors call "Kuroda normal form" too:

ABCD or
ABC or
Aa or
Aε

where ε is the empty string. Every unrestricted grammar is weakly equivalent to one using only productions of this form.

If the rule AB → CD is eliminated from the above, one obtains context-free grammars in Chomsky Normal Form. The Penttonen normal form (for unrestricted grammars) is a special case where first rule above is ABAD. Similarly, for context-sensitive grammars, the Penttonen normal form, also called the one-sided normal form (following Penttonen's own terminology) is:

ABAD or
ABC or
Aa

For every context-sensitive grammar, there exists a weakly equivalent one-sided normal form.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.