Kleene fixed-point theorem

In the mathematical areas of order and lattice theory, the Kleene fixed-point theorem, named after American mathematician Stephen Cole Kleene, states the following:

Kleene Fixed-Point Theorem. Suppose is a directed-complete partial order (dcpo) with a least element, and let be a Scott-continuous (and therefore monotone) function. Then has a least fixed point, which is the supremum of the ascending Kleene chain of

The ascending Kleene chain of f is the chain

obtained by iterating f on the least element ⊥ of L. Expressed in a formula, the theorem states that

where denotes the least fixed point.

Although Tarski's fixed point theorem does not consider how fixed points can be computed by iterating f from some seed (also, it pertains to monotone functions on complete lattices), this result is often attributed to Alfred Tarski who proves it for additive functions Moreover, Kleene Fixed-Point Theorem can be extended to monotone functions using transfinite iterations.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.