Isotropic quadratic form
In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form.
Suppose that (V, q) is quadratic space and W is a subspace of V. Then W is called an isotropic subspace of V if some vector in it is isotropic, a totally isotropic subspace if all vectors in it are isotropic, and an anisotropic subspace if it does not contain any (non-zero) isotropic vectors. The isotropy index of a quadratic space is the maximum of the dimensions of the totally isotropic subspaces.
A quadratic form q on a finite-dimensional real vector space V is anisotropic if and only if q is a definite form:
- either q is positive definite, i.e. q(v) > 0 for all non-zero v in V ;
- or q is negative definite, i.e. q(v) < 0 for all non-zero v in V.
More generally, if the quadratic form is non-degenerate and has the signature (a, b), then its isotropy index is the minimum of a and b. An important example of an isotropic form over the reals occurs in pseudo-Euclidean space.