Infinite-order square tiling

In geometry, the infinite-order square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.

Infinite-order square tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic regular tiling
Vertex configuration4
Schläfli symbol{4,}
Wythoff symbol | 4 2
Coxeter diagram
Symmetry group[,4], (*42)
DualOrder-4 apeirogonal tiling
PropertiesVertex-transitive, edge-transitive, face-transitive
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.