Homotopy excision theorem

In algebraic topology, the homotopy excision theorem offers a substitute for the absence of excision in homotopy theory. More precisely, let be an excisive triad with nonempty, and suppose the pair is ()-connected, , and the pair is ()-connected, . Then the map induced by the inclusion ,

,

is bijective for and is surjective for .

A geometric proof is given in a book by Tammo tom Dieck.

This result should also be seen as a consequence of the most general form of the Blakers–Massey theorem, which deals with the non-simply-connected case.

The most important consequence is the Freudenthal suspension theorem.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.