Homotopy analysis method
The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary/partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy-Maclaurin series to deal with the nonlinearities in the system.
The HAM was first devised in 1992 by Liao Shijun of Shanghai Jiaotong University in his PhD dissertation and further modified in 1997 to introduce a non-zero auxiliary parameter, referred to as the convergence-control parameter, c0, to construct a homotopy on a differential system in general form. The convergence-control parameter is a non-physical variable that provides a simple way to verify and enforce convergence of a solution series. The capability of the HAM to naturally show convergence of the series solution is unusual in analytical and semi-analytic approaches to nonlinear partial differential equations.