Hamilton's optico-mechanical analogy
Hamilton's optico-mechanical analogy is a conceptual parallel between trajectories in classical mechanics and wavefronts in optics, introduced by William Rowan Hamilton around 1831. It may be viewed as linking Huygens' principle of optics with Maupertuis' principle of mechanics.
While Hamilton discovered the analogy in 1831, it was not applied practically until Hans Busch used it to explain electron beam focusing in 1925. According to Cornelius Lanczos, the analogy has been important in the development of ideas in quantum physics. Erwin Schrödinger cites the analogy in the very first sentence of his paper introducing his wave mechanics. Later in the body of his paper he says:
Unfortunately this powerful and momentous conception of Hamilton is deprived, in most modern reproductions, of its beautiful raiment as a superfluous accessory, in favour of a more colourless representation of the analytical correspondence.
Quantitative and formal analysis based on the analogy use the Hamilton–Jacobi equation; conversely the analogy provides an alternative and more accessible path for introducing the Hamilton–Jacobi equation approach to mechanics. The orthogonality of mechanical trajectories characteristic of geometrical optics to the optical wavefronts characteristic of a full wave equation, resulting from the variational principle, leads to the corresponding differential equations.