Hahn decomposition theorem
In mathematics, the Hahn decomposition theorem, named after the Austrian mathematician Hans Hahn, states that for any measurable space and any signed measure defined on the -algebra , there exist two -measurable sets, and , of such that:
- and .
- For every such that , one has , i.e., is a positive set for .
- For every such that , one has , i.e., is a negative set for .
Moreover, this decomposition is essentially unique, meaning that for any other pair of -measurable subsets of fulfilling the three conditions above, the symmetric differences and are -null sets in the strong sense that every -measurable subset of them has zero measure. The pair is then called a Hahn decomposition of the signed measure .
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.