Unit (ring theory)

In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that

where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u. The set of units of R forms a group R× under multiplication, called the group of units or unit group of R. Other notations for the unit group are R, U(R), and E(R) (from the German term Einheit).

Less commonly, the term unit is sometimes used to refer to the element 1 of the ring, in expressions like ring with a unit or unit ring, and also unit matrix. Because of this ambiguity, 1 is more commonly called the "unity" or the "identity" of the ring, and the phrases "ring with unity" or a "ring with identity" may be used to emphasize that one is considering a ring instead of a rng.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.