Plücker embedding

In mathematics, the Plücker map embeds the Grassmannian , whose elements are k-dimensional subspaces of an n-dimensional vector space V, either real or complex, in a projective space, thereby realizing it as a projective algebraic variety. More precisely, the Plücker map embeds into the projectivization of the -th exterior power of . The image is algebraic, consisting of the intersection of a number of quadrics defined by the § Plücker relations (see below).

The Plücker embedding was first defined by Julius Plücker in the case as a way of describing the lines in three-dimensional space (which, as projective lines in real projective space, correspond to two-dimensional subspaces of a four-dimensional vector space). The image of that embedding is the Klein quadric in RP5.

Hermann Grassmann generalized Plücker's embedding to arbitrary k and n. The homogeneous coordinates of the image of the Grassmannian under the Plücker embedding, relative to the basis in the exterior space corresponding to the natural basis in (where is the base field) are called Plücker coordinates.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.