Genus g surface
In mathematics, a genus g surface (also known as a g-torus or g-holed torus) is a surface formed by the connected sum of g distinct tori: the interior of a disk is removed from each of g distinct tori and the boundaries of the g many disks are identified (glued together), forming a g-torus. The genus of such a surface is g.
A genus g surface is a two-dimensional manifold. The classification theorem for surfaces states that every compact connected two-dimensional manifold is homeomorphic to either the sphere, the connected sum of tori, or the connected sum of real projective planes.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.