Genetically modified crops
Genetically modified crops (GM crops) are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments (e.g. resistance to a herbicide), or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.
Part of a series on |
Genetic engineering |
---|
Genetically modified organisms |
History and regulation |
Process |
Applications |
Controversies |
Farmers have widely adopted GM technology. Acreage increased from 1.7 million hectares in 1996 to 185.1 million hectares in 2016, some 12% of global cropland. As of 2016, major crop (soybean, maize, canola and cotton) traits consist of herbicide tolerance (95.9 million hectares) insect resistance (25.2 million hectares), or both (58.5 million hectares). In 2015, 53.6 million ha of Genetically modified maize were under cultivation (almost 1/3 of the maize crop). GM maize outperformed its predecessors: yield was 5.6 to 24.5% higher with less mycotoxins (−28.8%), fumonisin (−30.6%) and thricotecens (−36.5%). Non-target organisms were unaffected, except for lower populations some parasitoid wasps due to decreased populations of their pest host European corn borer; European corn borer is a target of Lepidoptera active Bt maize. Biogeochemical parameters such as lignin content did not vary, while biomass decomposition was higher.
A 2014 meta-analysis concluded that GM technology adoption had reduced chemical pesticide use by 37%, increased crop yields by 22%, and increased farmer profits by 68%. This reduction in pesticide use has been ecologically beneficial, but benefits may be reduced by overuse. Yield gains and pesticide reductions are larger for insect-resistant crops than for herbicide-tolerant crops. Yield and profit gains are higher in developing countries than in developed countries. Pesticide poisonings were reduced by 2.4 to 9 million cases per year in India alone. A 2011 review of the relationship between Bt cotton adoption and farmer suicides in India found that "Available data show no evidence of a 'resurgence' of farmer suicides" and that "Bt cotton technology has been very effective overall in India." During the time period of Bt cotton introduction in India, farmer suicides instead declined by 25%.
There is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, but that each GM food needs to be tested on a case-by-case basis before introduction. Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe. The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.
However, opponents have objected to GM crops on grounds including environmental impacts, food safety, whether GM crops are needed to address food needs, whether they are sufficiently accessible to farmers in developing countries and concerns over subjecting crops to intellectual property law. Safety concerns led 38 countries, including 19 in Europe, to officially prohibit their cultivation.