Shear velocity
Shear velocity, also called friction velocity, is a form by which a shear stress may be re-written in units of velocity. It is useful as a method in fluid mechanics to compare true velocities, such as the velocity of a flow in a stream, to a velocity that relates shear between layers of flow.
Shear velocity is used to describe shear-related motion in moving fluids. It is used to describe:
- Diffusion and dispersion of particles, tracers, and contaminants in fluid flows
- The velocity profile near the boundary of a flow (see Law of the wall)
- Transport of sediment in a channel
Shear velocity also helps in thinking about the rate of shear and dispersion in a flow. Shear velocity scales well to rates of dispersion and bedload sediment transport. A general rule is that the shear velocity is between 5% and 10% of the mean flow velocity.
For river base case, the shear velocity can be calculated by Manning's equation.
- n is the Gauckler–Manning coefficient. Units for values of n are often left off, however it is not dimensionless, having units of: (T/[L1/3]; s/[ft1/3]; s/[m1/3]).
- Rh is the hydraulic radius (L; ft, m);
- the role of a is a dimension correction factor. Thus a= 1 m1/3/s = 1.49 ft1/3/s.
Instead of finding and for the specific river of interest, the range of possible values can be examined; for most rivers, is between 5% and 10% of :
For general case
where τ is the shear stress in an arbitrary layer of fluid and ρ is the density of the fluid.
Typically, for sediment transport applications, the shear velocity is evaluated at the lower boundary of an open channel:
where τb is the shear stress given at the boundary.
Shear velocity is linked to the Darcy friction factor by equating wall shear stress, giving:
where fD is the friction factor.
Shear velocity can also be defined in terms of the local velocity and shear stress fields (as opposed to whole-channel values, as given above).