Flag (geometry)

In (polyhedral) geometry, a flag is a sequence of faces of a polytope, each contained in the next, with exactly one face from each dimension.

More formally, a flag ψ of an n-polytope is a set {F–1, F0, ..., Fn} such that FiFi+1 (–1 ≤ in – 1) and there is precisely one Fi in ψ for each i, (–1 ≤ in). Since, however, the minimal face F–1 and the maximal face Fn must be in every flag, they are often omitted from the list of faces, as a shorthand. These latter two are called improper faces.

For example, a flag of a polyhedron comprises one vertex, one edge incident to that vertex, and one polygonal face incident to both, plus the two improper faces.

A polytope may be regarded as regular if, and only if, its symmetry group is transitive on its flags. This definition excludes chiral polytopes.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.