Fixed-point iteration

In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.

More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is

which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e.,

More generally, the function can be defined on any metric space with values in that same space.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.