Fixed-field alternating gradient accelerator
A Fixed-Field alternating gradient Accelerator (FFA; also abbreviated FFAG) is a circular particle accelerator concept that can be characterized by its time-independent magnetic fields (fixed-field, like in a cyclotron) and the use of alternating gradient strong focusing (as in a synchrotron).
In all circular accelerators, magnetic fields are used to bend the particle beam. Since the magnetic force required to bend the beam increases with particle energy, as the particles accelerate, either their paths will increase in size, or the magnetic field must be increased over time to hold the particles in a constant size orbit. Fixed-field machines, such as cyclotrons and FFAs, use the former approach and allow the particle path to change with acceleration.
In order to keep particles confined to a beam, some type of focusing is required. Small variations in the shape of the magnetic field, while maintaining the same overall field direction, are known as weak focusing. Strong, or alternating gradient focusing, involves magnetic fields which alternately point in opposite directions. The use of alternating gradient focusing allows for more tightly focused beams and smaller accelerator cavities.
FFAs use fixed magnetic fields which include changes in field direction around the circumference of the ring. This means that the beam will change radius over the course of acceleration, as in a cyclotron, but will remain more tightly focused, as in a synchrotron. FFAs therefore combine relatively less expensive fixed magnets with increased beam focus of strong focusing machines.
The initial concept of the FFA was developed in the 1950's, but was not actively explored beyond a few test machines until the mid-1980s, for usage in neutron spallation sources, as a driver for muon colliders and to accelerate muons in a neutrino factory since the mid-1990s.
The revival in FFA research has been particularly strong in Japan with the construction of several rings. This resurgence has been prompted in part by advances in RF cavities and in magnet design.