Evolution of sexual reproduction
Sexual reproduction is an adaptive feature which is common to almost all multicellular organisms and various unicellular organisms. Currently, the adaptive advantage of sexual reproduction is widely regarded as a major unsolved problem in biology. As discussed below, one prominent theory is that sex evolved as an efficient mechanism for producing variation, and this had the advantage of enabling organisms to adapt to changing environments. Another prominent theory, also discussed below, is that a primary advantage of outcrossing sex is the masking of the expression of deleterious mutations. Additional theories concerning the adaptive advantage of sex are also discussed below. Sex does, however, come with a cost. In reproducing asexually, no time nor energy needs to be expended in choosing a mate and, if the environment has not changed, then there may be little reason for variation, as the organism may already be well-adapted. However, very few environments have not changed over the millions of years that reproduction has existed. Hence it is easy to imagine that being able to adapt to changing environment imparts a benefit. Sex also halves the amount of offspring a given population is able to produce. Sex, however, has evolved as the most prolific means of species branching into the tree of life. Diversification into the phylogenetic tree happens much more rapidly via sexual reproduction than it does by way of asexual reproduction.
Part of a series on |
Evolutionary biology |
---|
|
What selection pressures led to the evolution and maintenance of sexual reproduction?
Evolution of sexual reproduction describes how sexually reproducing animals, plants, fungi and protists could have evolved from a common ancestor that was a single-celled eukaryotic species. Sexual reproduction is widespread in the Eukarya, though a few eukaryotic species have secondarily lost the ability to reproduce sexually, such as Bdelloidea, and some plants and animals routinely reproduce asexually (by apomixis and parthenogenesis) without entirely having lost sex. The evolution of sex contains two related yet distinct themes: its origin and its maintenance.
Although Bacteria and Archaea (prokaryotes) have processes that can transfer DNA from one cell to another (conjugation, transformation, and transduction), these processes are not evolutionarily related to sexual reproduction in Eukaryotes. In eukaryotes, true sexual reproduction by meiosis and cell fusion is thought to have arisen in the last eukaryotic common ancestor, possibly via several processes of varying success, and then to have persisted.
Since hypotheses for the origin of sex are difficult to verify experimentally (outside of evolutionary computation), most current work has focused on the persistence of sexual reproduction over evolutionary time. The maintenance of sexual reproduction (specifically, of its dioecious form) by natural selection in a highly competitive world has long been one of the major mysteries of biology, since both other known mechanisms of reproduction – asexual reproduction and hermaphroditism – possess apparent advantages over it. Asexual reproduction can proceed by budding, fission, or spore formation and does not involve the union of gametes, which accordingly results in a much faster rate of reproduction compared to sexual reproduction, where 50% of offspring are males and unable to produce offspring themselves. In hermaphroditic reproduction, each of the two parent organisms required for the formation of a zygote can provide either the male or the female gamete, which leads to advantages in both size and genetic variance of a population.
Sexual reproduction therefore must offer significant fitness advantages because, despite the two-fold cost of sex (see below), it dominates among multicellular forms of life, implying that the fitness of offspring produced by sexual processes outweighs the costs. Sexual reproduction derives from recombination, where parent genotypes are reorganized and shared with the offspring. This stands in contrast to single-parent asexual replication, where the offspring is always identical to the parents (barring mutation). Recombination supplies two fault-tolerance mechanisms at the molecular level: recombinational DNA repair (promoted during meiosis because homologous chromosomes pair at that time) and complementation (also known as heterosis, hybrid vigor or masking of mutations).