Entropy of entanglement

The entropy of entanglement (or entanglement entropy) is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem. The entropy of entanglement is the Von Neumann entropy of the reduced density matrix for any of the subsystems. If it is non-zero, i.e. the subsystem is in a mixed state, it indicates the two subsystems are entangled.

More mathematically; if a state describing two subsystems A and B is a separable state, then the reduced density matrix is a pure state. Thus, the entropy of the state is zero. Similarly, the density matrix of B would also have 0 entropy. A reduced density matrix having a non-zero entropy is therefore a signal of the existence of entanglement in the system.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.