Elongation factor P

EF-P (elongation factor P) is an essential protein that in bacteria stimulates the formation of the first peptide bonds in protein synthesis. Studies show that EF-P prevents ribosomes from stalling during the synthesis of proteins containing consecutive prolines. EF-P binds to a site located between the binding site for the peptidyl tRNA (P site) and the exiting tRNA (E site). It spans both ribosomal subunits with its amino-terminal domain positioned adjacent to the aminoacyl acceptor stem and its carboxyl-terminal domain positioned next to the anticodon stem-loop of the P site-bound initiator tRNA. The EF-P protein shape and size is very similar to a tRNA and interacts with the ribosome via the exit “E” site on the 30S subunit and the peptidyl-transferase center (PTC) of the 50S subunit. EF-P is a translation aspect of an unknown function, therefore It probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase.

Elongation factor P (EF-P) KOW-like domain
crystal structure of translation initiation factor 5a from pyrococcus horikoshii
Identifiers
SymbolEFP_N
PfamPF08207
Pfam clanCL0107
InterProIPR013185
PROSITEPDOC00981
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Elongation factor P (EF-P) OB domain
crystal structure of translation elongation factor p from thermus thermophilus hb8
Identifiers
SymbolEFP
PfamPF01132
Pfam clanCL0021
InterProIPR001059
PROSITEPDOC00981
CDDcd04470
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Elongation factor P, C-terminal
crystal structure of translation elongation factor p from thermus thermophilus hb8
Identifiers
SymbolElong-fact-P_C
PfamPF09285
InterProIPR015365
SCOP21ueb / SCOPe / SUPFAM
CDDcd05794
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

EF-P consists of three domains:

  • An N-terminal KOW-like domain
  • A central OB domain, which forms an oligonucleotide-binding fold. It is not clear if this region is involved in binding nucleic acids
  • A C-terminal domain which adopts an OB-fold, with five beta-strands forming a beta-barrel in a Greek-key topology

Eukaryotes and archaea lack EF-P. In these domains, a similar function is performed by the archaeo-eukaryotic initiation factor, a/eIF-5A, which exhibits some modest sequence and structural similarity with EF-P. There are, however, important differences between EF-p and eIF-5A. (a) EF-P has a structure similar to that of L-shaped tRNA and it contains three (I,II and III) β-barrel domains. In contrast, eIF-5A contains only two domains (C and N) with a corresponding size difference. (b) Moreover, as opposed to eIF-5A, which contains the non-proteinogenic amino acid hypusine that is essential for its activity, EF-P displays a diversity of post-transcriptional modifications at the analogous position (β-lysylation of lysine residue, rhamnosylation of arginine residue, or none at all).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.