Donsker's theorem

In probability theory, Donsker's theorem (also known as Donsker's invariance principle, or the functional central limit theorem), named after Monroe D. Donsker, is a functional extension of the central limit theorem for empirical distribution functions. Specifically, the theorem states that an appropriately centered and scaled version of the empirical distribution function converges to a Gaussian process.

Let be a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Let . The stochastic process is known as a random walk. Define the diffusively rescaled random walk (partial-sum process) by

The central limit theorem asserts that converges in distribution to a standard Gaussian random variable as . Donsker's invariance principle extends this convergence to the whole function . More precisely, in its modern form, Donsker's invariance principle states that: As random variables taking values in the Skorokhod space , the random function converges in distribution to a standard Brownian motion as

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.