Domain adaptation
Domain adaptation is a field associated with machine learning and transfer learning. This scenario arises when we aim at learning a model from a source data distribution and applying that model on a different (but related) target data distribution. For instance, one of the tasks of the common spam filtering problem consists in adapting a model from one user (the source distribution) to a new user who receives significantly different emails (the target distribution). Domain adaptation has also been shown to be beneficial for learning unrelated sources. Note that, when more than one source distribution is available the problem is referred to as multi-source domain adaptation.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.