Dilation (metric space)
In mathematics, a dilation is a function from a metric space into itself that satisfies the identity
for all points , where is the distance from to and is some positive real number.
In Euclidean space, such a dilation is a similarity of the space. Dilations change the size but not the shape of an object or figure.
Every dilation of a Euclidean space that is not a congruence has a unique fixed point that is called the center of dilation. Some congruences have fixed points and others do not.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.