Trapezohedron

In geometry, an n-gonal trapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron is the dual polyhedron of an n-gonal antiprism. The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites. With a higher symmetry, its 2n faces are kites (also called deltoids).

Set of dual-uniform n-gonal trapezohedra
Example: dual-uniform pentagonal trapezohedron (n = 5)
Typedual-uniform in the sense of dual-semiregular polyhedron
Faces2n congruent kites
Edges4n
Vertices2n + 2
Vertex configurationV3.3.3.n
Schläfli symbol{ } ⨁ {n}
Conway notationdAn
Coxeter diagram
Symmetry groupDnd, [2+,2n], (2*n), order 4n
Rotation groupDn, [2,n]+, (22n), order 2n
Dual polyhedron(convex) uniform n-gonal antiprism
Propertiesconvex, face-transitive, regular vertices

The "n-gonal" part of the name does not refer to faces here, but to two arrangements of each n vertices around an axis of n-fold symmetry. The dual n-gonal antiprism has two actual n-gon faces.

An n-gonal trapezohedron can be dissected into two equal n-gonal pyramids and an n-gonal antiprism.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.