Deepfake
Deepfakes (portmanteau of "deep learning" and "fake") are synthetic media that have been digitally manipulated to replace one person's likeness convincingly with that of another. Deepfakes are the manipulation of facial appearance through deep generative methods. While the act of creating fake content is not new, deepfakes leverage powerful techniques from machine learning and artificial intelligence to manipulate or generate visual and audio content that can more easily deceive. The main machine learning methods used to create deepfakes are based on deep learning and involve training generative neural network architectures, such as autoencoders, or generative adversarial networks (GANs). In turn the field of image forensics develops techniques to detect manipulated images.
Part of a series on |
Artificial intelligence |
---|
Deepfakes have garnered widespread attention for their potential use in creating child sexual abuse material, celebrity pornographic videos, revenge porn, fake news, hoaxes, bullying, and financial fraud. The spreading of disinformation and hate speech through deepfakes has a potential to undermine core functions and norms of democratic systems by interfering with people's ability to participate in decisions that affect them, determine collective agendas and express political will through informed decision-making. This has elicited responses from both industry and government to detect and limit their use.
From traditional entertainment to gaming, deepfake technology has evolved to be increasingly convincing and available to the public, allowing the disruption of the entertainment and media industries.