De Rham invariant
In geometric topology, the de Rham invariant is a mod 2 invariant of a (4k+1)-dimensional manifold, that is, an element of – either 0 or 1. It can be thought of as the simply-connected symmetric L-group and thus analogous to the other invariants from L-theory: the signature, a 4k-dimensional invariant (either symmetric or quadratic, ), and the Kervaire invariant, a (4k+2)-dimensional quadratic invariant
It is named for Swiss mathematician Georges de Rham, and used in surgery theory.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.