Cuboctahedron

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

Cuboctahedron

(Click here for rotating model)
TypeArchimedean solid
Uniform polyhedron
ElementsF = 14, E = 24, V = 12 (χ = 2)
Faces by sides8{3}+6{4}
Conway notationaC
aaT
Schläfli symbolsr{4,3} or
rr{3,3} or
t1{4,3} or t0,2{3,3}
Wythoff symbol2 | 3 4
3 3 | 2
Coxeter diagram or
or
Symmetry groupOh, B3, [4,3], (*432), order 48
Td, [3,3], (*332), order 24
Rotation groupO, [4,3]+, (432), order 24
Dihedral angle
ReferencesU07, C19, W11
PropertiesSemiregular convex quasiregular

Colored faces

3.4.3.4
(Vertex figure)

Rhombic dodecahedron
(dual polyhedron)

Net

Its dual polyhedron is the rhombic dodecahedron.

The cuboctahedron was probably known to Plato: Heron's Definitiones quotes Archimedes as saying that Plato knew of a solid made of 8 triangles and 6 squares.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.