Cuboctahedron
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.
Cuboctahedron | |
---|---|
(Click here for rotating model) | |
Type | Archimedean solid Uniform polyhedron |
Elements | F = 14, E = 24, V = 12 (χ = 2) |
Faces by sides | 8{3}+6{4} |
Conway notation | aC aaT |
Schläfli symbols | r{4,3} or rr{3,3} or |
t1{4,3} or t0,2{3,3} | |
Wythoff symbol | 2 | 3 4 3 3 | 2 |
Coxeter diagram | or or |
Symmetry group | Oh, B3, [4,3], (*432), order 48 Td, [3,3], (*332), order 24 |
Rotation group | O, [4,3]+, (432), order 24 |
Dihedral angle | |
References | U07, C19, W11 |
Properties | Semiregular convex quasiregular |
Colored faces |
3.4.3.4 (Vertex figure) |
Rhombic dodecahedron (dual polyhedron) |
Net |
Its dual polyhedron is the rhombic dodecahedron.
The cuboctahedron was probably known to Plato: Heron's Definitiones quotes Archimedes as saying that Plato knew of a solid made of 8 triangles and 6 squares.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.