Cubic reciprocity

Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x3  p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x3p (mod q) is solvable if and only if x3q (mod p) is solvable.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.