Császár polyhedron

In geometry, the Császár polyhedron (Hungarian: [ˈt͡ʃaːsaːr]) is a nonconvex toroidal polyhedron with 14 triangular faces.

Császár polyhedron
An animation of the Császár polyhedron being rotated and unfolded
TypeToroidal polyhedron
Faces14 triangles
Edges21
Vertices7
Euler char.0 (Genus 1)
Vertex configuration3.3.3.3.3.3
Symmetry groupC1, [ ]+, (11)
Dual polyhedronSzilassi polyhedron
PropertiesNon-convex

This polyhedron has no diagonals; every pair of vertices is connected by an edge. The seven vertices and 21 edges of the Császár polyhedron form an embedding of the complete graph K7 onto a topological torus. Of the 35 possible triangles from vertices of the polyhedron, only 14 are faces.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.