Cryptomorphism
In mathematics, two objects, especially systems of axioms or semantics for them, are called cryptomorphic if they are equivalent but not obviously equivalent. In particular, two definitions or axiomatizations of the same object are "cryptomorphic" if it is not obvious that they define the same object. Examples of cryptomorphic definitions abound in matroid theory and others can be found elsewhere, e.g., in group theory the definition of a group by a single operation of division, which is not obviously equivalent to the usual three "operations" of identity element, inverse, and multiplication.
This word is a play on the many morphisms in mathematics, but "cryptomorphism" is only very distantly related to "isomorphism", "homomorphism", or "morphisms". The equivalence may in a cryptomorphism, if it is not actual identity, be informal, or may be formalized in terms of a bijection or equivalence of categories between the mathematical objects defined by the two cryptomorphic axiom systems.