Gosset–Elte figures

In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams.

The Coxeter symbol for these figures has the form ki,j, where each letter represents a length of order-3 branches on a Coxeter–Dynkin diagram with a single ring on the end node of a k length sequence of branches. The vertex figure of ki,j is (k  1)i,j, and each of its facets are represented by subtracting one from one of the nonzero subscripts, i.e. ki  1,j and ki,j  1.

Rectified simplices are included in the list as limiting cases with k=0. Similarly 0i,j,k represents a bifurcated graph with a central node ringed.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.