Degenerate distribution
In mathematics, a degenerate distribution is, according to some, a probability distribution in a space with support only on a manifold of lower dimension, and according to others a distribution with support only at a single point. By the latter definition, it is a deterministic distribution and takes only a single value. Examples include a two-headed coin and rolling a die whose sides all show the same number. This distribution satisfies the definition of "random variable" even though it does not appear random in the everyday sense of the word; hence it is considered degenerate.
Cumulative distribution function CDF for k0=0. The horizontal axis is x. | |||
Parameters | |||
---|---|---|---|
Support | |||
PMF | |||
CDF | |||
Mean | |||
Median | |||
Mode | |||
Variance | |||
Skewness | undefined | ||
Ex. kurtosis | undefined | ||
Entropy | |||
MGF | |||
CF |
In the case of a real-valued random variable, the degenerate distribution is a one-point distribution, localized at a point k0 on the real line. The probability mass function equals 1 at this point and 0 elsewhere.
The degenerate univariate distribution can be viewed as the limiting case of a continuous distribution whose variance goes to 0 causing the probability density function to be a delta function at k0, with infinite height there but area equal to 1.
The cumulative distribution function of the univariate degenerate distribution is: